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Asymptotic Boundary Conditions and Numerical 
Methods for Nonlinear Elliptic Problems 

on Unbounded Domains* 

By T. M. Hagstrom and H. B. Keller 

Abstract. We present a derivation and implementation of asymptotic boundary conditions to 
be imposed on "artificial" boundaries for nonlinear elliptic boundary value problems on 
semi-infinite "cylindrical" domains. A general theory developed by the authors in [11] is 
applied to establish the existence of exact boundary conditions and then to obtain useful 
approximations to them. The derivation is based on the Laplace transform solution of the 
linearized problem at infinity. We discuss the incorporation of the asymptotic boundary 
conditions into a finite-difference scheme and present the results of numerical experiments on 
the solution of the Bratu problem in a two-dimensional stepped channel. We also touch on 
certain problems concerning the existence of solutions of this problem on infinite domains 
and conjecture on the behavior of the critical parameter value with respect to changes in the 
domain. Some numerical evidence supporting the conjecture is given. 

1. Introduction. There are basically only two methods by means of which problems 
posed on infinite domains can be "replaced" by problems posed on finite domains. 
The first rather obvious method is to map the infinite domain into a finite domain 
with as smooth a mapping as possible. But of course the mapping cannot be 
bounded and so the resulting mapped problem must contain singular points in its 
finite domain. To treat this new problem numerically one must then face the nasty 
problem of approximations about a singularity. This important area of approxima- 
tion theory is poorly developed and consequently this approach is seldom used in 
practice. For nonlinear problems and problems posed in two or more dimensions the 
difficulties are indeed formidable. 

The second method of reduction to a finite domain is to introduce an artificial 
finite boundary and to consider the problem only on the enclosed finite domain. Of 
course one must then impose some "appropriate" boundary conditions on the 
artificial boundary. What "appropriate" means is not always discussed properly. 
Indeed a host of work is done devising "nonreflecting" or "soft" or "absorbing" 
boundary conditions without relating the new reduced problem to the original 
problem. Frequently, this is not even noticed as the problem on the infinite domain 
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may not have been completely formulated (i.e., a well-posed problem is not always 
presented). These attempts to use artificial boundaries without relating the ap- 
proximation to a well-posed problem essentially seek to avoid the difficulties 
inherent in the previous mapping method by ignoring the singularities. 

However, it is possible to use the introduction of artificial boundaries in a 
completely rigorous and practical way for many proolems. It has been done by 
several authors and we briefly point out the most important such contributions at 
the end of this section. Our approach to this technique is to seek to replace the 
original well-posed problem for the infinite domain by an "equivalent" well-posed 
problem on a finite domain. By equivalent we mean that the solutions to the two 
problems (finite and infinite) agree on the finite domain that is common to the two 
formulations. While it may be possible to do this in principle, the required auxiliary 
data, such as projection operators and special solutions in a neighborhood of 
infinity, are not generally available. Thus they must be approximated, and in doing 
so we obtain a sequence of asymptotic boundary conditions, of successively higher 
orders, for the finite domain problem. This theory has been developed for quite 
general partial differential equations by the authors in [11], [12]. It is a rather natural 
extension of related work on ordinary differential equations over infinite intervals by 
Keller [15], Lentini [19], Jepson [13], Jepson and Keller [14] and Keller and Lentini 
[17]. 

In this paper we show how our theory applies to nonlinear elliptic problems in 
infinite "cylindrical" domains. Specifically, we consider semilinear elliptic equations 
of the form 

(1.1) (a) Lu(x,y) aa +Li +L2U=AU,Y), 
ax2 + ax 2 =(,) 

posed on unbounded cylindrical domains in RN?l: 

(x,y) E [O,oo) X U2, Q c RN. 

On the lateral surface of this domain we pose conditions independent of x, say, 

(1.1) (b) a (y) au + b,&2(y)u = cQ(y); x E [O,oc), y E aQ. av 
At the base of the cylinder we require 

(1.1) (c) bI(y) au + bo(y)u = co(y) X = o, y E U. 

As x -> oo the conditions are that 

(i) lim u(x,y) = U :,(y), 
x _ 00 

(1.1) (d) 
au_____ 

_ 

(ii) lim (xy) = 0. 
x ax 

The operator L in (1.1(a)) is uniformly elliptic, second-order, with coefficients 
independent of x, say, 

N 

(a) L1 I a0j(y) + a0(y), 
j=1 

(1.2) N 

(b) L 1 a( (Y) -y--) + a (y), a a1-a 

j=1 
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In (1.1(b)) the conormal derivative associated with L on aQ is denoted by a/av. 
Specifically, if v(y) (vP,..., IN) iS the unit outward normal to au, then using 
(1.1(a)) and (1.2), 

(c) a a + 2 E v,(y)a0,(y)- a,0 ao; 

(1.2) _ Ea 
(d) Pi(y_a N(y 

j=1 

The conditions (1.1(d)) as x -*xo are that u(x, y) should approach the solution of 
the limiting problem in the cross section: 

(a) L2U. (Y) = f(u. (y) I y) y 

(1.3) (b) a 2(y) a^ U+ bQ(y)u. = c(y), y E E au 

Problems of the above form arise in many applications. Semilinear elliptic 
equations are common in chemical reaction-diffusion processes (see Aris [3]), joule 
heating (see Keller and Cohen [16]), etc. The methods we describe can be applied to 
much more general systems, to higher-order equations, and we can allow variations 
with x in both the domain shape and in the coefficients. In the latter case, some 
asymptotic conditions need only be imposed as x -* 00, to approach the above 
conditions, and our theory remains valid. These extensions are discussed in Hagstrom 
[12] and Hagstrom and Keller [11]. Indeed, the problem we study in Section 4 has a 
noncylindrical domain. 

To treat problem (1.1) numerically, we introduce an artificial boundary at some 
location x = T > 0 and seek to impose appropriate boundary conditions there over 
Q. Then we need only solve (numerically) a more or less standard boundary value 
problem over [0, T] X U. A theory to characterize exact boundary conditions over 
such artificial boundaries has been developed by the authors in [11], [12]. In most 
applications, these exact solutions can only be approximated. One of the main 
purposes of this work is to illustrate the power of this general theory and to 
demonstrate the use of the approximate asymptotic boundary conditions on a nonlin- 
ear problem. 

Other authors have discussed boundary conditions at artificial boundaries for 
linear elliptic problems. Gustafsson and Kreiss [10] point out the possibility of 
deriving exact conditions by means of Laplace transforms in x. Fix and Marin [7] 
and Goldstein [9] use a related approach to treat problems in underwater acoustics 
and wave propagation in cylindrical waveguides. The first approximation in our 
asymptotic boundary conditions agrees with what would be obtained by applying 
the Laplace transform method to the linearized problem about u""(y). 

In Section 2 we summarize the basic results of [11] and show how they apply to 
problem (1.1). In particular, we derive the asymptotic boundary conditions (ABC) 
and state conditions for their validity. In Section 3 we show one way to employ the 
ABC in a discretization and discuss their efficient implementation. Finally in Section 
4 the Bratu problem in a two-dimensional stepped channel is considered. Some 
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theoretical results for finite domains are recalled and used. Numerical results are 
presented to show the effects of varying the location of the artificial boundary and 
of varying the order of approximation in the ABC. Some questions and numerical 
experiments relating to the existence of solutions in unbounded domains are also 
examined. 

2. The Asymptotic Boundary Conditions: "ABC". We assume the existence of a 
solution, u. (y), of the limiting problem (1.3). Then, with the definition 

(2.1) v(x,y) -u(x,y) - (y), 

we write (1.1(a)) as 

(2.2) (a) Yv--Lv -fu(u.O(y)) v = r(v), 
(b) r(v) - f (uOO + v) - fu(u.) v - f (u.) 

Note that r(v) = O(1V12) as lvl -* 0. Since the lateral boundary conditions (1.1(b)) 
are independent of x and uO,(y) satisfies them, we have for v(x, y) the homogeneous 
conditions 

(2.2) (c) aa (y) a + baQ(y)v = 0, x E [0,co), y E aQ. 

The conditions, (1.1(d)), as x -- oo now become, in terms of v, 

(i) lim v(x,y) = 0, 
(2.2) (d) (ii) lim = 0. 

x -*OC ax 

For the present, we ignore the conditions (1.1(c)) on the base of the cylinder, 
x = 0, and seek solutions of (2.2) in the "tail": x > T for some T > 0. After all, if 
problem (1.1) has a solution then (2.2) must have a solution in the tail. Our goal is to 
find conditions at x = T that the solution in the tail must satisfy. 

In [11] we establish sufficient conditions for problems of the form (2.2) to have 
solutions in the tail. To apply this theory here, and to use the same notation, we 
reformulate the problem as an ordinary differential equation in a Banach space. 
Thus we introduce the two component vectors 

(2.3) (a) w(x) W2W(XIY)J a (x,I ) 

and for each x >, T they are to lie in a Banach space - defined by 

(2.3) (b) -- {w:w1 E v W20(), w2 E W (2) 

Here, W1(2) and W2(2) are Sobolev spaces and 

(2.3) (c) W20() { v:v(y) e W2(a2), aas(y) a v+ baQ(y)v = 0,y E a2 

Thus elements of W20(2) satisfy the homogeneous boundary conditions (2.2(c)). 
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We introduce the linear and nonlinear operators A and R as 

(a) Aw- _L2 + fU (u (y)) -L) ( 
-L2w1 + fu(uX)w1 

- Lw2)' 
(2.4) (b0() rv) (fu0 ~ 

(b) R (w)- r ( w,) ) (f ( U'. + wi) )-f ( uxo) fu ( u) w, 

Now (2.2) can be formulated in the tail as 

(a) dw - Aw = R(w), x > TI w(x) ( 2; 
(2.5) dx 

(b) lim w(x) = 0. 
x -x co 

To solve (2.5), we must first study initial value or Cauchy problems for the linear 
operator on the left-hand side of (2.5(a)). Thus we consider 

(a) dw - Aw 0, x > ,w E ; 
(2.6) dx 

The solution of (2.6) is formally represented in terms of the solution operator 
S(x, x') as 

(2.7) w(x) = S(x, ) 

In particular, we are interested in all initial data for which the solution satisfies 
(2.5(b)). Since the equation and the condition at co are homogeneous, this data must 
form a subspace of '-4we call it the admissible subspace: 

(2.8) V(T) - {N :q E , lim S(x, T) = 0}. 
x __3 0 

In general, we can characterize 1(T) by means of the spectrum {Xk} of the 
operator A and its eigenfunctions, { cpk }, that is, 

(2.9) (a) A4k = Xk4k k = 1, 2, ...,4kII + 0; 
* ~~(b) Ok(Y) E -- 

Recall, from (2.3(b), (c)), that boundary conditions are imposed by means of (2.9(b)). 
Using (2.4(a)) and the above we see that this eigenvalue problem is equivalent to the 
scalar elliptic eigenvalue problem 

(a) L2+k-fu(U.(Y))4k+XkLlkk+X2k4k= , Y E Q; 

(b) a,s2(y) a + k 
v,(y)ao,(y)0k + bau(y)4k =0, Y 

i=l 

Then we have 

(2.10) (c) kk(Y)( 
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Solutions of (2.6) can be represented in terms of these eigenfunctions by simple 
separation of variables or Laplace transforms, provided 

(a) The eigenvalues, Xk, are distinct and bounded away from the 

(2.11) imaginary axis; 

(b) The eigenfunctions, 4k' form a Riesz basis* * for R. 

We assume that (2.11) holds for the remainder of our study. In the terminology of 
[11], conditions (2.11(a)) insure that the linearized problem has an exponential 
dichotomy. This seems necessary for the nonlinear problems which we treat here. It 
assures that u.(y) is "spatially stable," say as x -x o, and without this, it would be 
difficult to satisfy (1.1(d)). We do not require exponential dichotomies for linear 
problems, but make do with ordinary dichotomies; see [11] for more details. The 
completeness in (2.11(b)) can be difficult to check for nonselfadjoint problems; the 
selfadjoint case is discussed in Berezanskil [6] and Agmon [1], who treats the case 
with L1 _ 0. In Agmon and Nirenberg [2] sufficient conditions are given for 
completeness in the class of initial data yielding absolutely integrable solutions in 
the tail. 

Formally, solutions of (2.6) are given in terms of the eigenfunctions of (2.9) by 
expansions of the form 

(2.12) (a) w(x, C) = E ck(J)4k(y)eXk(x ), 
k 

where of course, for any t E 9, 

(2.12) (b) Ck Ck(t) 4k(Y). 
k 

The expansion coefficients Ck(A) are given in terms of the eigenfunctions 4k(Y) of 
the adjoint problem to (2.9) or (2.10) by an appropriate inner product, say, 

(2.12) (c) ck(t) -4k, ) 

The normalization is such that (4 40k) = -1 Since (2.11) holds, the solution 
representation (2.12) is valid and will satisfy (2.5(b)), provided that 

(2.12) (d) Ck = 0 if ReXk > ? 
Thus we have two other equivalent formulations of the admissible space (2.8) as 

(2.13) (a) ?(T) = a E, K1Pk,E ) = 0 for all k withReXk > ?} 
(b) = span{ 4k Re Xk < 01? 

These are characterizations of a?(T) in terms of the spectrum of A. Note that they 
are independent of T. When variations with x are allowed in the tail, this may not be 
the case. We observe that (2.11) and the representation (2.12) make it clear that 
S(x, x') has an exponential dichotomy. Our general theory in [11], [12] is formulated 
in terms of dichotomies and thus the present case serves as an example. In fact, 
(2.12) leads us to a specific representation of the solution operator'as 

(2.14) S(x, ) t (y) _ E e k(X-T)(k (Y) ( Kk) 
k 

** See Gohberg and Krein [8] for a discussion of nonorthogonal bases. 
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The completeness (2.11(b)) and the characterization (2.13) allow us to introduce a 

projection 9(T) which takes - into s(T) as follows: 

(2.15) (a) 2(T)4 = '(T), 

where 

(2.15) (b) i-E Ck(0)0kEE 
k 

implies 

(2.15) (c) 2 (T)t Ck(00k (E V(T). 
k: ReXk<0 

Recalling (2.12(b), (c)), we can write the projection formally as 

(2.15) (d) 2(T)t(Y) = L Ok(Y) ( !k, t) 
k: ReXk<0 

Note that the complement of W(T), given by (I - 2), represents all initial data 
which yield unbounded solutions of (2.6) as x -> oX. This projection onto the 

complement of s(T) has the formal representation 

(2.16) [I -2(T)] t(y) E 4k(Y)K4k, t)- 
k: ReXk>0 

We can use these projections and the solution operator S(x, x') to write a general 
variation of parameters formula for solving the special inhomogeneous form of (2.6): 

(a) dx - Aw =F(x), x > , w E ; 

(2.17) (b) 9(T)w(T) = 11 
e 

Q(T); 

(c) lim w(x) = 0. 
x -x 00 

The solution representation is 

w(x) = S(x, T)' + fS(x, x')2(x')F(x') dx' 

(2.18) 00 
- f S(x, x')[I - 2(x')]F(x') dx'. 

This solution is valid provided IIF(x)II < zo, since S(x, x') has an exponential 
dichotomy. We note that the no-mixing condition holds, that is, 

(2.19) 2(x)S(x, )t = S(x, T)2(T)t 

for all t E E for which S(x, )t exists. Note that (2.17(b)) does not specify w(T) 

uniquely but only the projection of it into s(T). Using (2.18) and (2.19), we obtain 

for the complementary part of w( T) 

(2.20) [I - 9 (T)]W(T) = - S(T, x')[I - 2(x')]F(x') dx'. 

These are the Asymptotic Boundary Conditions for linear problems. We claim 

that any solution of (2.17(a), (c)) must satisfy (2.20). Clearly, any such solution 

satisfies (2.17(b)) for some q E s='(T). Then (2.18) is valid and hence (2.20) follows. 

Note that this condition is independent of q for linear problems. 
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Now we return to the nonlinear problem (2.5). If this problem has a solution, we 
denote it by w(x; q) where q E s(T) C g is the value taken on at x = T of 9w(x), 
that is, 

(T)W(T; a) = a EGs(T). 

Then, calling R(w(x; q)) F(x), we see that our solution also satisfies (2.17(a), (c)) 
and hence (2.20). We rewrite this latter condition for w(x; q) as 

(2.21) [I - 9(-T)]W(iT, l) = -f S('T, X') [I - (x')] R (w(x'; Tl)) dx'. 

These are the Asymptotic Boundary Conditions for the nonlinear problem. Note 
that they are highly nonlinear in w(T), the value of the solution at x = T. In general, 
(2.21) does not determine w(T) uniquely. In fact, it is only a constraint on that part 
of w(T) that is not in s(T). The freedom left is just enough to enable us to solve a 
finite problem, on [0, T] X , and to satisfy the conditions (1.1(c)) on the base of the 
cylinder.*** Under "appropriate" conditions on the nonlinearity it is shown in [11] 
that unique solutions of (2.17) exist for arbitrary q if IInjI is sufficiently small. The 
proof of existence uses a contraction mapping argument which easily follows from: 

Conditions (2.22). (a) There exists a 8 > 0 and K < 1 such that for all v1(x), v2(x) 
in [T, oc] with llvlll < 8, llv2ii < 8: 

sup IJ S(x, x' 2(x') [R (v1(x')) -R (v2(x'))] dx' 
x>T 

-| f S(x, x')[I - 2(x')] [R(v1(x')) - R(v2(x'))] dx' < Kjv, - v2jj. 

(b) There exists a 81 E (0, 8) such that for all v1(x) as above: 

sup f S(x, x')2(x')R(v1(x')) dx' 

-f S(x, x') [I - 9(x')] R(v1(x')) dx' < 8. 

(These are the Assumptions 6.6 of [11] with (c) eliminated, since it follows here for 
sufficiently small.) 

Specifically, the contraction proceeds as follows: 

(a) w(')(x;'t) = S(x;T)>1 1 i (T); 

(b) w(P+')(x; r) = w(1)(x; r) + f S(x, x')2(x')R(w()(x'; q)) dx' 
(2.23), dx 

-| f S(x, x')[I - 9(x')] R(w(`)(x'; i)) dx'. 

Using Conditions 2.22, it is not difficult to show the convergence of these iterates to 
a solution for 1 small. We note from (2.23(a), (b)) and (2.19) that 

(2.24) (a) 2(T)w(")(x; rj) = q for all v = 1,2, .... 
Thus we must also take as part of the ABC: 

(2.24) (b) .2(T)w(T,'t) =i GEsW(T). 

***We do not go into these details here. But existence proofs along the indicated lines can be given 
and they assume that the "dimensionality" of the base condition is the same as that of dV(T). 
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Now the finite (in x) problem that we seek to solve numerically can be summarized, 
using (2.1) and (2.3), as 

(a) dw -Aw= R(w), 0<x<T; 

(b) [aa?Q(y)a + ba?Q(y)]wi(x,Y) = 0, 

(2.25) 0 < x < T, y E a2 (or w(x) E ); 

(c) b1 (y) w2 (0) + bo (y) w1 (0) = co (y) - bo (y) uO .(y), y E Q; 

(d) Q(T)w(T) = 1; 

(e) [I - 2(T)]w(,) = -f S(T, X')[I - 2(x')]R(w(x','t)) dx'. 

2.1. Approximations to the ABC. Of course, in most problems we cannot expect to 
know exactly the projection, 9(T), or the solution operator, S(x, x'). Further, the 
exact solution w(x, ,) in the tail, x > T, is also not known. Thus we must approxi- 
mate these operators and the solution in the tail in order to apply the ABC in 

(2.25(d), (e)). 
When 9(T) and S(x, x') are approximated, it is clear how to modify the 

ABC-we simply use these approximations in (2.25(d), (e)). This is illustrated in 
Section 3. 

To get around the unknown solution in the tail, w(x, ,), we can use the iteration 
scheme (2.23(a), (b)) and terminate it at some finite order, m. Then, in place of 
(2.25(e)), we use 

(2.26) [I - 29(T)] W(T,i) = -f S(T, X)[I - 2(x)]R(w( )(x,ti)) dx. 

We call these the ABC of order m. Obviously, to use them, the "correct" value of 
1 E s(T) is assumed known. In constructive procedures, as we show later in our 
numerical work, the value of q is determined iteratively along with the rest of w(x) 
over 0 < x < T. Then w(m)(x, ,) for x > T, in the tail, must also be determined for 
each iterate, to use in (2.26). 

However, there is an alternative way to proceed, based on the assumption that 

IIw(x) in the tail is small. We simply expand R(w) in a Taylor series about w = 0 
and retain a finite number of terms. It is not difficult to see that, if we retain only 
the terms up to and including order m, the error in this procedure is of the same 
order as that in using (2.26). We express this new form of the ABC of order m in 
terms of the expansion coefficients for a spectral representation of the solution in 
terms of eigenfunctions introduced in (2.9). (When this eigenvalue problem is not 
selfadjoint we must employ the adjoint eigenproblem to carry out the expansions.) 
We indicate the details of this alternative procedure below. 

The Taylor expansion of R(w) is, in terms of the higher-order Frechet derivatives 
R ww etc., 

(2.27) (a) R(w) = 2R ww(0)ww + 6Rwww(0)www + 

Using the expansion 

(w(x,) = E (x,)oi 
(2.27) (b) ( I 

Cixq 4i 
, 

W\ 
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we have 

(2.27) (c) R(w) = 2 RWW(O)CiCAi.4. + 6 E RWww(O)CiCjCk4i4j4k + 

However, an eigenfunction expansion of R(w) in the form 

(2.28) (a) R(w) = E P(w) n 
n 

with 

Pn, (w) = n , R(w)) 

yields, on using (2.27c), 

(2.28) (b) pn(w) a E a)C,Cj + L a(n)C,CC+ 
i,j i,j,k 

Here we have introduced 

a/()= K(n 'Rww (?) 4141) 
(2.28) (c) a$(n) = '(+ RWWW(O)4,414k) 

Note that the explicit dependence of R(w(x, q)) on w in the expansion (2.28) is all 
contained in the coefficients Cj(x, q) of (2.27(b)). The coefficients a(), a .... can, 
in principle, be determined once and for all. Then they are used with any iterates 
approximating w by simply recomputing the new Cj(x, r) to get new approximations 
to R(w(x, n)). 

We use the expansions (2.27(b)) and (2.28) in the ABC (2.25(e)) to get, with the 
aid of (2.14) and (2.16), 

Cn (T'r7) = -f e()( E a9C (x, ,i)Cj(x, ,) 

(2.29) + )Ci(X + dx, 

i ,j,k 

for all n with Re X n > 0. 

This form of the ABC is no more useful than using (2.27(a)) in (2.25(e)). However, if 

we wish to truncate this form of the ABC after quadratic terms, we can use for the 

Cj(x, ,) on the right-hand side the coefficients obtained by expanding w(l)(x; q) 
from (2..23(a)). From (2.14) and (2.15(d)) these coefficients are found to be 

(2.30) (a) Cj(x,i) - e XJ)(T, ) ifReX 0; 
=0 if ReX > 0; 

where 

(2.30) (b) Cj(T,) =(,) _Cjl 

or equivalently, 

k: CkOk (T) 
k: ReXk<0 
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With (2.30) in (2.29) we thus get, on retaining only quadratic terms and using 
Cn (rT) -Cn, 

ae9c.c 
(2.31) c= E 

+1] 
A-A for all n with ReX > O. 

ijReXi<On Re Xi < 0 

The above second-order form of the ABC are quite useful and explicit; that is, no 
quadratures in x are involved. Of course, in order to use them, we must be prepared 
to find the eigenfunction representation, that is, to compute the cj as in (2.30(b)), 
and then given the Cn as in (2.31) we must form w(T, ,) as in (2.27(b)). Thus the use 
of fast transforms can play an important role in the efficient implementation of our 
procedures. 

2.2. The Quadratic ABC in the Selfadjoint Case. When L1 0, the eigenvalue 
problems (2.9) and (2.10) are selfadjoint. This case occurs very often in applications 
and so we discuss it here. 

A glance at (2.10) reveals that now Xk, k = 1,2,..., are the eigenvalues of a 
second-order selfadjoint elliptic operator. In order to satisfy (2.11(a)), all of these Xk 
must be positive. Then each eigenfunction Pk(Y) of (2.10) belongs to a pair of 
eigenvalues, +Xk, of (2.9). The eigenfunctions of (2.9) are as in (2.10(c)), and to 
label them all we simply use k = + 1, + 2,... and 

(2.32) (a) X?k = ,/, Xk X k > ? ?k(Y) (jk>k(Yi 

For the 'k(Y) we take 

(2.32) (b) 4+'k(Y) ?( k k (Y), k = 1,2,...; 

and the O:k(Y) are normalized by 

(2.32) (c) IkkI = f f ck(y) dy = 2 I' k = 1,2, .... 

Then K+j, 4k) = Sjk still holds, which accounts for the sign choice in (2.32(b)) and 
the normalization in (2.32(c)). We have the eigenfunction expansions as in (2.27(b)). 
However, with w ('), we note that 

(a) Ck =K4'k,W)= Xk(V,4k) +(Vx,k) ) 

(b) &k = K'_k,W) = Xk(V,'kk) (Vx,0k) 
k 

Here we introduce for v(x, y) e W20(12) on x > 0: 

(2.33) (c) dk(x) (V, k) V *f |(X,fY)(y)k(Y) dy, 

and note that under appropriate smoothness: 

(2.33) (d) d dk(x) d,(x) = (Vx,kk). 

Of course, eigenfunction expansions of v(x, y) and v.(x, y) are given by 
00 

(a) v(x,y) E 2Xkdk(x)4k(y), 

(2.34) k=1 
00 

d 
X)k Y 

(b) vx (x, y) 2 / 2kkk 
k=1 
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To employ the above results in the second-order ABC of (2.31), we recall that by 
our labeling in (2.32(a)): 

ReXk > 0, ReX k < 0 fork = 1,2,.... 

Thus we get, using (2.33) in (2.31), 

dn (rT) = -Xndn(T) 

(2.35) ''? Xi + AJ + An [XId1(T)-d1'(T)] [Xjdj(T)-dj,(T)], i>O xi 
I 

Xi 

j>O 
n= 1,2,.... 

For practical applications we renormalize the a-coefficients and write them ast 

4 X X a (n) 

(2.36) (a) ii - )-A + Xi +'JA; n,i, j = 1,2.... 

Then we get from (2.35), retaining second-order accuracy, the conditions 

(2.36) (b) d'(T) = -Xd( ()- P fi1(7)dj(T)dj(T). 
i>O 
j>O 

These are the quadratic ABC that we employ in the calculations reported in Section 
4. We derive (2.36(b)) by using the leading-order term in (2.35), that is, we set 
d(T)= -Xkdk (T) in the quadratic term, and hence second-order accuracy is 
retained. 

3. Discrete Approximations. We now show how to employ the Asymptotic 
Boundary Conditions (of second or lower order) in a numerical computation. For 
simplicity we assume the selfadjoint case, L_ 0, no mixed derivatives in L2 (i.e., 
a11 = 0 for i + j), domain bounded by coordinate surfaces and Dirichlet boundary 
conditions (i.e., a3- 0). We also assume a uniform grid Qh with mesh h placed on 
Q. Then L2 is approximated by the usual centered second-order (2N + 1)-point 
scheme, say, 

N r h 
(3.1) L2? (Y) ED1 [a(,y -- je)D j (y)4 + a(y) ph(y). 

j=12 

Here, D,+ are the forward and backward finite-difference operators in the yjth 
coordinate direction, e. is the unit vector in the yjth coordinate direction, y is any 
point in the interior of Qh, call it Qh?, and t1h(y) is any mesh function defined on Qh. 

On the x-interval [-h/2, T + h/2] we also use the spacing h to place a grid of points 

xJ= jh - h/2, 0 < j < J + 1, so that T = Jh. Then, if Vh(X, Y) is a mesh function 
on {X } X Qh which is to approximate v(x, y), we use as the difference equations to 
approximate (2.25(a)): 

(3.2) DX DX Vh(Xj,y) + L hVh(Xj,y) = r(vh(X},y)), 1 <j < j. 

In defining v and r(-) above we have to use an approximation to u,,(y), the 
solution of the limiting problem (1.3). We use for this the solution of the discrete 
problem 

(a) LhUh (y) =f(Uh(y),y), YEQ; 

(b) uh (y) = ca3(y), y E ash. 

t Here we have used the fact that in the selfadjoint case h (v) - (v). and so = 
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Here we have indicated the Dirichlet boundary conditions to be imposed on a Q. This 
nonlinear difference problem is to be solved by some iterative procedure, preferably 
Newton's method or some close variant. When u' (y) is determined, then r(-) is 
defined as in (2.2(b)) and of course (2.1) also is applied on Oh, so that 

(3.3) (c) vh(xj,y) = uh(xj,y) - uh (y), y E =i2 

The boundary conditions (1.1(c)) or, equivalently, (2.25(c)), are imposed at x = 0 
and use values at x0 = -h/2 and xl = h/2: 

(3) (y4 Vh(Xl, y) - vh(Xo y) + b(y Vh(Xl, y) + vh(Xo, y) 

(3.4) blyth ] ?YL2 
= Co(y) - bo(y)uh (y), y E 

go 

Of course, if bl(y) 0, we need not use this centering procedure. Then we use 
[0, T + h/2] as the x-interval with x0 = 0, xj = jh, and T = (J + 1)h. 

On the lateral boundary we use the Dirichlet conditions which, by (1.1(b)) with 

a. -0 and (3.3(b), (c)), become 

(3.5) vh(xj,y) = 0, Y E a= h,1O < j < J. 

Finally, we turn to the discrete version of the ABC's. In order to employ them we 
must approximate the projection 2(T) or, equivalently, we must approximate the 
solutions of the eigenvalue problem. In the present selfadjoint case, the discrete 
eigenproblem and normalization corresponding to (2.32(c)) are 

(a) L k (Y) u( X-f(uh (y)) (ph(y) = 0, y E h; 

(3 .6) (b) (p k(y) = 0, y 
EC 

aQ 

(c) [ohk(y)]2 h N= 2A 
YE GE k 

We denote the number of meshpoints in Q2h by K(h) and then 1 < k < K(h) in 
(3.6). It is well known that, for a sufficiently fine mesh, some of the eigenvalues and 
eigenvectors of (3.6) are P(h2) approximations to the corresponding eigenpairs of 
(2.10). Say, those for k = 1, 2,..., K(h) < K(h), where K(h) - oo as h 0. The 
spectral resolution of the mesh function vh(xj, y) can be written as 

K(h) 

(3.7) (a) vh(X , y) = E 2XVdk(xJ)h(y), 
k=1 

where 

(3.7) (b) d h(xj) = vh(Xj,y)ph (y)hN. 
yk 

k 

Of course, the /3/7) of (2.36(a)) are approximated in the obvious way, using in 
analogy with (2.28(c)), 

(3.8) O'(~~n)h 
f 

_ut(Uah (y))(pnh(ph(y) Ny() (3.8) a~) Y =fi hy 
YEj 

00 
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Now a discrete form of the second-order ABC, (2.36(b)), can be written at T, the 
midpoint of the last x-interval [xj, Xi+ 1, as 

dh(X+) -h(J nJJ- dn(Xi) 
h 

dn (xJ+1) + dn(xJ) 
n 2 
K(h) K(h) +(Xj+ h 

(3.9) - 2 
.' . 

r=l j=1 

n =1,2,...,K(h). 
Combined with (3.7), these form nonlinear boundary conditions on the mesh 
function vh(xj, y). The complete finite, nonlinear, approximating problem consists of 
(3.2), (3.4), (3.5) and (3.9). Fortunately, we need not take K(h) = K(h), the number 
of points in Q? as not all of these eigenfunctions are reasonable approximations to 
their continuous counterparts. The choice of K(h) is not too crucial in most 
applications. 

We point out another way to formulate the second-order ABC. Using (2.34) we 
get, on multiplying (2.36(b)) by 2Xnon(y) and summing on n, 

(3.10) (a) vx(T,y) - E 2Xndn(T)0n(y) - E2ALnft0)dj(T)dj(T) n(y). 
n>O i>O 

j>O 
n>O 

Or, in terms of v and vx, this is 

Vx(T,y) =- E 2X2n(V(T, 4Pn)0n(Y) 
n>O 

(3.10) (b) - E 2Xn,(jn)(V(T, .),p0)(V(T, .),9+,)+"(Y) 
i>O 
j>O 
n>O 

The nonlocal nature of our boundary conditions with respect to the artificial 
boundary, 2, at x = T is clearly indicated by the inner products (v, 'k) in (3.10). 
Obviously, in the numerical applications we replace (3.10) by centering discrete 
quantities at x = T using values at xj, and xi,1, essentially as in (3.9), but using 
(3.7(b)) in (3.10(a)) to approximate the dj(T) by djh(T). These forms of the ABC 
make it clear that we do not have to use all k(h) eigenfunctions of the discrete 
eigenproblem (3.6) in order to have a determined system (i.e., as many unknowns as 
equations). 

Whichever discrete form of the ABC's is used, we must solve the final discrete 
problem by some iterative procedure (in the nonlinear case). To use Newton's 
method, we must solve linear systems with coefficient matrix given by the Jacobian 
matrix of the full nonlinear problem. From (3.2), the derivatives with respect to the 
unknown, vh(xj, y) for all o E E?h, form a banded (in fact, block bidiagonal) matrix 
with bandwidth essentially equal to the number of points in oh-say MN if Q is a 
cube in RN with M points on each edge. The boundary conditions (3.4) and (3.5) do 
not alter this structure, but the ABC as in (3.9) or the discrete form of (3.10) may. At 
worst, they couple the last 2MN columns, thus increasing the bandwidth by MN. If 
this is the case, we use a solution algorithm based on "bordering" or block Gaussian 
elimination and so need not factor a matrix with bandwidth greater than MN + 1. 
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The effect of our nonlocal boundary conditions on iterative methods for solving 
the linear systems that arise, either from Newton's method in the nonlinear case or 
the basic linear difference equations from linear problems, has not been examined in 
any generality. An equivalent of the linear form of (3.10(b)) has been used by 
Bayliss, Goldstein and Turkel [5], and they find essentially no degradation of a 
preconditioned conjugate gradient algorithm for the Helmholtz equation in N = 3 
dimensions. 

Of course, using the full quadratic ABC's as in (3.9) or (3.10) requires a significant 
number of additional calculations just to evaluate the matrix elements in the 
Jacobian. For example, the discrete form of (3.10(b)) would yield matrix elements of 
the form 
(3.11) (a) 9(y,-)= E A(y,-,y')vh(T, Y 

y eh 

where 
K(h) 

(3.11) (b) A(y,9, y ) = E ( 
i,j,k 

The A(y, 9, y') can be evaluated in advance, and so only (3.11(a)) need be done each 
iteration. Since it must be done for each y and 9 E- h this involves ((M3N) 
multiplications per iteration. The direct solution of the banded system requires 
essentially JM3N multiplications. 

There are two ways in which the error due to the ABC can be reduced: first, by 
taking more terms in the expansion (i.e., higher-order ABC's); second, by moving the 
location of the boundary, T, further out. The latter requires essentially d(9/JM3N) 
additional multiplications to move T out to T + hiAJ. Using an approximation of 
order s, rather than just second order, changes the operation count to evaluate the 
new form of (3.11(a)) to 0(M(s+l)N ). Thus it appears that our choice s = 2 is in 
some sense optimal if direct solvers are to be used. 

4. Example: Bratu Problem in a Stepped Channel. We consider the Bratu equation 

(4.1) Au + y -Ke y) ED 

subject to Dirichlet conditions, say, 
(4.2) u 0, (x, y) e aD. 
Such problems arise in the theory of thermal ignition of gases (see Aris [3]), and Eq. 
(4.1) is frequently associated with the names of Gelfond and Frank-Kamenetskii. 
Existence of positive solutions of (4.1)-(4.2) on finite domains, D, has been studied 
by many authors. 

We shall consider the Bratu problem (4.1)-(4.2) on infinite domains consisting of 
a horizontal channel with a rectangular region cut out of, or added onto the channel, 
along one of its sides. Thus we take D, the closure of D, to be a stepped channel 
given by 

(4.3)~ ~ _ (x, y): [x-xl>aOy<1 

U {(x, y): Ix- xol < a, d < y < 1) 
For d E (0,1) the channel is narrowed along xo - a < x < xo + a, while for d < 0 
it is wider there; see Figure 1. 
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Y Y 

d0 i 1 
0 ~~oh'- on 

xox 

(a) (b) 

FIGURE 1 
The stepped channel with: (a) d > 0; (b) d < 0. 

The boundary conditions (4.2) apply at all finite boundary points, while at cc we 
impose 

(4.4) lim u(x, y) = U.OO(y). 
Ix-*oo 

Here, u ,(y) is a solution of the limiting cross-sectional problem: 

(a) 
d2 u. (y) - 

-Ke U. (y) 0 <y < 1; 
(4.5) dy 2 

(b) uO, (O) = uO, (1) = 0. 

This is just the one-dimensional Bratu problem on the unit interval, and it can be 
solved, implicitly, in closed form to get 

em 
(4.6) (a) u (y) = ln cosja (Y - 

where 

(4.6) (b) a- jeK/2, m = u00(0). 

To satisfy the boundary conditions, K and m must be related by 

e m= cosh2a/2. 
A little manipulation using cosh-l1 z reveals that this can be put into the form 

(4.6) (c) 4=F(O) - I(1n 0 < _ e-m < 1. 

It is easy to see that F(O) = F(1) = 0 and F(0) has one maximum over 0 < 0 < 1 at 
0 = 0*, the root of F'(O) = 0, or 

(4.7) (a) ln( z )=z, with z- 1-. 

Thus, we easily find that (4.6(c)) has two roots, 0L and Ou in O < L < O* < OU < 1, 

for each K in O < K < K*, where 

(4.7) (b) K* = 2F2(0*) = 3.5138.... 

There are no real roots for K outside [0, K*] and hence (4.5) has no real solutions for 
K > K*. 
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We must use the solution with 0 = OL(K) in (4.4) so that condition (2.11(a)) is 
satisfied. That is, if we use for uOO(y) the minimal positive solution of (4.5), then it 
follows from Theorem 5.1 in Keller and Cohen [16] that the eigenvalues Xk of (2.10) 
are all positive. (If we use 0 = Ou(K), it can be shown that X, < 0, and our theory 
does not apply. We believe that in this case the behavior as lxi -* o can be 
oscillatory, and this is currently under study.) In our actual calculations we do not 
employ the forms given in (4.6), but rather we solve (4.5) numerically via finite 
differences. 

Finally, we seek only solutions of (4.1) which are symmetric in x about xo. Thus 
we need only consider D, , the semi-infinite part of D in which x > xo, say. Along 
the new boundary at x = xo we impose the symmetry condition 

(4.8) axox?Y)=0 d<y< 

For the numerical solution of our problem we introduce an artificial boundary at 
several values of x = T > xo + a. At each such boundary we have employed three 
different asymptotic boundary conditions: 

(i) Zero-order conditions: au(T, y)/Ix = 0; 

(4.9) (ii) First-order (linear) approximation: d"(Tr) + XAdn(Tr) = 0; 

(iii) Second-order (quadratic) approximation: see Eq. (2.36). 

To insure accuracy near the corners in the domain D>, we first map it into a 
straight channel before discretization. To do this, we use the conformal mapping, for 
d > 0: 

(a) + in = F-'(z) F-'(x + iy); 
2 W~12 )1/21 

(b) F('; d)- In [w ?(w + a 

(4.10) -(1 - a)1/21n[(w + a)1/2 +(1 a )1/2W/21 

+(_ 1/2., 

(c) w--egt- 1 a--(2 -d)d. 
For d < 0, the mapping is obtained by setting d * = d(d - 1)1- and replacing 

F(t; d) by F *(t; d), where 

F*(t; d) (d* -1) 1F(-; d*) + d. 

Now the straight boundaries at x = xo and x = T are mapped into slightly curved 
boundaries in the (t, q)-plane. This yields perturbations to the boundary conditions, 
and they are easily calculated using linear interpolation on the net functions which 
approximate the solution. 

In the new domain in the (, ,q)-plane, a straight channel with slightly curved ends, 
the Bratu equation (4.1) is approximated by the usual centered differences on a 
uniform grid with mesh h = 0.05. Newton's method is used to solve the difference 
equations which include the asymptotic boundary conditions (4.9) on the image of 
x = T. Since this image is curved, the bandwidth of the Jacobian is increased and a 
bordering technique is used to solve for the Newton iterates. The computations were 
done on VAX 11/780 computers at the California Institute of Technology and at 
the Mathematics Research Center at the University of Wisconsin. 
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In the first set of computations we present results for a = 0.463, d = 0.4, and 
K = 3.51. This is very close to the critical value K * beyond which no real solutions of 
(4.5) exist. The minimum eigenvalue of the linearized problem about uOO(y) in this 
case is X2 = 0.66825. Thus the decay to uOO(y) as x -* oo is not very rapid. We have 
used each of the boundary conditions in (4.9) at each of four values of T given in 
Table I. These T values were determined by specifying the number of mesh intervals 
between the step and the artificial boundary to the right of the step to be N = 2, 
N = 5, N = 10, and N = 20, respectively. To get an accurate solution, to which we 
compared all the others, we used T = 2.262 with the quadratic asymptotic boundary 
conditions; this solution is labeled uh. The others are denoted by up and in Table 
I we list the values of ahuh - for all twelve test computations. As expected, 
for each fixed T value the quadratic approximation yields the best agreement, the 
zero-order case is worst, and the agreement improves as T increases. 

TABLE I 

Comparison of "errors" in numerical solutions using different order asymp- 
totic boundary conditions imposed at a variety of artificial boundaries. The 
"tail " is the area between the step and the artificial boundary (in the mapped 
domain). 

T N = no. vert. mesh ABC appx. u h -uh ha U " lines in " tail" order appx. max 
uX 

- u| 

0 .2131 
.381 2 1 .0213 .341 

2 .0105 

0 .1936 
.520 5 1 .0154 .269 

2 .0051 
0 .1472 

.764 10 1 .0082 .177 
2 .0018 

0 .0743 
1.262 20 1 .0030 .076 

2 .0015 

These results are displayed graphically in Figures 2, 3, 4, and 5 where the level 
curves of u are approximated by interpolation from Uh for two different T values 
and two different orders of ABC. In Figure 2 the solution is obtained on a "large" 
domain, T = 1.262, using the quadratic ABC. In Figure 3 the same level curves are 
plotted from the solution obtained on a "small" domain, with T = 0.381, using the 
quadratic ABC. These curves are superposed in Figure 4 and one can see that the 
errors decay as we move away from the artificial boundary toward the interior of the 
domain: x < T. This is as the theory and linear error analysis of [11], [12] predict. In 
Figure 5 we superpose the large domain solution of Figure 2 with the small domain 
solution obtained using the zero-order ABC: u,(T, y) = 0. The level curves in the 
latter solution are quite distorted. 
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x=52 ufx=-.52 

X = -.057 X= 2.262 x=-.057 x =.381 

FIGURE 2 FIGURE 3 

Contour lines of u = const. from the Same as in Figure 2 but with 

numerical solution using T = 1.262 T= 0.381. 

and the second-order ABC. 

FIGURE 5 

FIGURE 4 Contour lines of Figure 2 superposed 
The contour lines of Figures 2 and 3 with those from the numerical solution 

superposed. using T = 0.381 and the zero-order ABC. 
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Numerous other calculations were done with d values in [0,1], and the results 
were quite similar when K < K*. This suggests that solutions of (4.1)-(4.4) exist for 
all d E [0,1] provided K < Ki*. We do not know of existence theorems for such 
problems on infinite domains, although there is a large and ever-growing body of 
results for finite domain problems. Indeed, the early work of Keller and Cohen [16] 
treats the finite domain case for fairly general nonlinearities. Important extensions 
of this work are contained in Bandle [4] who proves that minimal positive solutions 
grow with the size of the domain. If these results can be extended to infinite 
domains, they suggest, in the present case, that for d < 0 solutions may not exist for 
all K < K*. That is, we conjecture that for fixed a and d < 0, there is a critical value 

K**(a, d) < K* 

such that solutions of (4.1)-(4.4) exist for K < K**(a, d), but do not exist for 
K > K**(a, d). 

In terms of the problem of reaction-diffusion or spontaneous combustion, our 
above conjecture implies that an area of excess thickness in the channel can cause 
ignition in a slab whose infinite extension is stable. This seems quite reasonable, 
physically, as an excess volume of reaction locally need not allow the transmission 
by diffusion to the thinner region of infinite extent where the excess heat is 
dissipated. If this balance cannot be accomplished sufficiently fast, then ignition 
could result, which implies no finite steady-state solution. So, indeed, this reasoning 
suggests that K* *(a, d) is, for fixed d > 0, a monotone decreasing function of a. 

To get numerical evidence related to this conjecture we set d = -0.4 and consid- 
ered a set of values of a = xstep - x0, the half-length of the thicker part of the 
channel. Starting with small values of K <K K* = 3.51 .. ., for each particular a value 
we use continuation in K to get good initial estimates for the solution at K + AK. 

These are then used in Newton's method. As the number of iterations needed for 
convergence increases, we reduce AK, ultimately down to AK = 10-3. When Newton's 
method fails to converge in this sequence of continuations we have determined an 
estimate of K**(a, d). From the exact solution of the Bratu problem in a slab, 
(4.5)-(4.7), scaled to allow 0 < y < L 1 - d with d < 0, we can easily compute 
K*(d), the critical value for an infinite slab of thickness L = 1 - d. Clearly, in our 
above notation for the thickened stepped channel, we must have 

(4.11) K*(d) = K**(OQ,d). 

From the scaled version of (4.7) we obtain, using (4.11), that 

(4.12) K**(X,O) = 3.5138 ... , K**(X S-.4) = 1.791 .... 
Our continuation computations for the thickened slabs give us the following esti- 
mates: 

(a) K**(0.7415, -.4) 2.049, 

(4.13) (b) K**(1.028, -.4) 1.978, 

(c) K**(2.013,5-.4) 1.858, 

(d) K* *(2.994, -.4) 1.821. 

These results agree with the conjectured behavior of K**(a, d). Furthermore, since 
K**(O, -.4) = K**(XO 0) for these problems, we see that the results lie in the interval 
determined by (4.12); that is, between the critical values for uniform slabs of the 
thickest or thinnest parts of the nonuniform slab. 
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d=O.4 

a= 2.013 1.156 

FIGURE 6 
Contour lines of u = const. from the numerical solution using a = 2.013, 
d = -0.4, T = 1.247 and K = 1.857. The critical K value in this configuration 
was estimated to be Kcr = 1.858. 

In Figure 6 we plot level curves of the solution for the cases a = 2.013, d = -0.4, 
and K = 1.857. This is very close to the approximate critical value in (4.13(c)). The 
maximum value of u is 1.27, and it occurs at the left boundary. At x -x o the 
maximum value is 0.3. 
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